Polynomial Annihilation

Yue Zhang

This review is based on the paper 'Image Reconstruction from Undersampled Fourier Data Using the Polynomial Annihilation Transform' by R.Archibald, A.Gelb and R.B.Platte (2015).

September 17, 2015

Outline

Model

Model

Precusor

Recall 1: Final project of image processing class:

$$\min_{f} \|D_1 f\|_1 + \|D_2 f\|_1 + \frac{\mu}{2} \|MFf - \hat{f}\|_2^2$$

Where \hat{f} is measured Fourier data (incomplete). Mask M is given. **Recall 2:** Given 3 point uniformly distributed, say x_1 , x_2 and x_3 , the corresponding function value $f(\cdot)$. What's the 'best' polynomial approximation to f(x)?

Model

Polynomial annihilation model:

$$\min_{f} \|L_x^m f\|_1 + \|L_y^m f\|_1 + \frac{\mu}{2} \|MFf - \hat{f}^k\|_2^2$$

where L_x^m and L_y^m are the polynomial fitting matrices, or differential matrices.

Split Bregman algorithm is used. Matlab file 'PA.m' is in dropbox, under 'Yue/Image recon underSampled Fourier data'.

Pros? Cons?

Discussion: 3 operator splitting?